1. Use the chemical AgCl to describe solubility, molar solubility and solubility product.

2. Write balanced equations and solubility product expressions for the following compounds:
 a. CuBr
 b. ZnC₂O₄
 c. Ag₂CrO₄
 d. Hg₂Cl₂
 e. AuCl₃
 f. Mn₃(PO₄)₃

3. Silver Chloride has a larger Ksp than silver carbonate (Ksp = 1.6x10⁻¹⁰ and 8.1x10⁻¹² respectively). Does this mean that AgCl also has a larger molar solubility than Ag₂CO₃? Explain.

4. Calculate the concentration of ions in the following saturated solutions:
 a. [I⁻] in AgI solutions with [Ag⁺] = 9.1x10⁻⁹
 b. [Al³⁺] in Al(OH)₃ solution with [OH⁻] = 2.9 x10⁻⁹

5. From the solubility data given, calculate the solubility product for the following compounds:
 a. SrF₂ 7.3x10⁻² g/L
 b. Ag₃PO₄ 6.7x10⁻³ g/L

6. The molar solubility of MnCO₃ is 4.2x10⁻⁶ M. What is Ksp for this compound?

7. If 20.0 mL of 0.10 M Ba(NO₃)₂ are added to 50.0 mL of 0.10 M Na₂CO₃, will BaCO₃ precipitate? Supply explanation / calculations to support answer.

8. A volume of 75 mL of 0.060 M NaF is mixed with 25 mL of 0.15 M Sr(NO₃)₂. Calculate the concentrations in the final solution of NO₃⁻, Na⁺, Sr²⁺, and F⁻. (Ksp for SrF₂ = 20.x10⁻¹⁰)
9. Calculate the K_{sp} for each of the salts whose solubility is listed below.
 a. CaSO_4 = 5.0 \times 10^{-3} \text{ mol/L}
 c. AgC_2H_3O_2 = 1.02 \text{ g/100 mL}
 b. MgF_2 = 2.7 \times 10^{-3} \text{ mol/L}
 d. SrF_2 = 12.2 \text{ mg/100 mL}

10. Calculate
 a. the solubility in moles/L of each of three salts and
 b. the concentration of the cations in mg/mL in each of the saturated solutions.
 i. AgCN K_{sp} = 2.0 \times 10^{-12}
 ii. BaSO_4 K_{sp} = 1.5 \times 10^{-9}
 iii. FeS K_{sp} = 3.7 \times 10^{-19}
 iv. Mg(OH)_2 K_{sp} = 9.0 \times 10^{-12}
 v. Ag_2S K_{sp} = 1.6 \times 10^{-49}
 vi. CaF_2 K_{sp} = 4.9 \times 10^{-11}

11. Consider these slightly soluble salts:
 a. PbS K_{sp} = 8.4 \times 10^{-28}
 b. PbSO_4 K_{sp} = 1.8 \times 10^{-8}
 c. Pb(IO_3)_2 K_{sp} = 2.6 \times 10^{-13}
 i. Which is the most soluble?
 ii. Calculate the solubility in moles/L for PbSO_4.
 iii. How many grams of PbSO_4 dissolve in 1 L of solution?
 iv. How can you decrease the concentration of Pb^{2+}(aq) in a saturated solution of PbSO_4 solution?
 v. What is the concentration in moles/L of PbS in a saturated solution of the salt?

12. For each of these substances, calculate the milligrams of metallic ion that can remain at equilibrium in a solution having a \([OH^-]\) = 1.0 \times 10^{-4} \text{ mol/L}.
 a. Cu(OH)_2 K_{sp} = 1.6 \times 10^{-9}
 b. Fe(OH)_3 K_{sp} = 6.0 \times 10^{-38}
 c. Mg(OH)_2 K_{sp} = 6.0 \times 10^{-12}